Methyl coenzyme M reductase (mcrA) gene abundance correlates with activity measurements of methanogenic H2/CO2-enriched anaerobic biomass

نویسندگان

  • Rachel Morris
  • Anne Schauer-Gimenez
  • Ujwal Bhattad
  • Colleen Kearney
  • Craig A Struble
  • Daniel Zitomer
  • James S Maki
چکیده

Biologically produced methane (CH₄) from anaerobic digesters is a renewable alternative to fossil fuels, but digester failure can be a serious problem. Monitoring the microbial community within the digester could provide valuable information about process stability because this technology is dependent upon the metabolic processes of microorganisms. A healthy methanogenic community is critical for digester function and CH₄ production. Methanogens can be surveyed and monitored using genes and transcripts of mcrA, which encodes the α subunit of methyl coenzyme M reductase - the enzyme that catalyses the final step in methanogenesis. Using clone libraries and quantitative polymerase chain reaction, we compared the diversity and abundance of mcrA genes and transcripts in four different methanogenic hydrogen/CO₂ enrichment cultures to function, as measured by specific methanogenic activity (SMA) assays using H₂ /CO₂ . The mcrA gene copy number significantly correlated with CH₄ production rates using H₂ /CO₂ , while correlations between mcrA transcript number and SMA were not significant. The DNA and cDNA clone libraries from all enrichments were distinctive but community diversity also did not correlate with SMA. Although hydrogenotrophic methanogens dominated these enrichments, the results indicate that this methodology should be applicable to monitoring other methanogenic communities in anaerobic digesters. Ultimately, this could lead to the engineering of digester microbial communities to produce more CH₄ for use as renewable fuel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Guaymas Basin.

The methanogenic community in hydrothermally active sediments of Guaymas Basin (Gulf of California, Mexico) was analyzed by PCR amplification, cloning, and sequencing of methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Members of the Methanomicrobiales and Methanosarcinales dominated the mcrA and 16S rRNA clone libraries from the upper 15 cm of the sediments. Within the H2/CO2- and format...

متن کامل

Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea.

Phylogenetic and stable-isotope analyses implicated two methanogen-like archaeal groups, ANME-1 and ANME-2, as key participants in the process of anaerobic methane oxidation. Although nothing is known about anaerobic methane oxidation at the molecular level, the evolutionary relationship between methane-oxidizing archaea (MOA) and methanogenic archaea raises the possibility that MOA have co-opt...

متن کامل

Inhibitory effects of ammonia on methanogen mcrA transcripts in anaerobic digester sludge.

Methanogens in anaerobic ammonia-rich digesters show differential responses to ammonia stress. The mechanism for this is poorly understood. In the present study, we determined the rates of methane production, the composition of methanogen mcrA (the gene coding for the alpha subunit of methyl-coenzyme M reductase) and their transcripts in response to ammonium addition in the anaerobic sludge ret...

متن کامل

Anaerobic microbial community response to methanogenic inhibitors 2‐bromoethanesulfonate and propynoic acid

Methanogenic inhibitors are often used to study methanogenesis in complex microbial communities or inhibit methanogens in the gastrointestinal tract of livestock. However, the resulting structural and functional changes in archaeal and bacterial communities are poorly understood. We characterized microbial community structure and activity in mesocosms seeded with cow dung and municipal wastewat...

متن کامل

Post-translational thioamidation of methyl-coenzyme M reductase, a key enzyme in methanogenic and methanotrophic Archaea

Methyl-coenzyme M reductase (MCR), found in strictly anaerobic methanogenic and methanotrophic archaea, catalyzes the reversible production and consumption of the potent greenhouse gas methane. The α subunit of MCR (McrA) contains several unusual post-translational modifications, including a rare thioamidation of glycine. Based on the presumed function of homologous genes involved in the biosyn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014